• Send to a friend Email
  • Share Facebook Twitter
  • More ShareThis

Electrical Engineering

http://www.ee.ucla.edu/

Henry Samueli School of Engineering and Applied Science

EL ENGR

Courses

Lecture, three hours; discussion, one hour; outside study, eight hours. Requisites: courses 102, 161. Two-dimensional linear systems and Fourier transforms. Foundation of diffraction theory. Analysis of optical imaging systems. Spatial filtering and optical information processing. Wavefront reconstruction and holography. Letter grading.

Seminar, four hours; outside study, eight hours. Special topics in electrical engineering for undergraduate students that are taught on experimental or temporary basis, such as those taught by resident and visiting faculty members. May be repeated once for credit with topic or instructor change. Letter grading.

Lecture, three hours; discussion, one hour; outside study, eight hours. Requisite: course 172. Introduction to semiconductor optoelectronic devices for optical communications, interconnects, and signal processing. Basic optical properties of semiconductors, pin photodiodes, avalanche photodiode detectors (APD), light-emitting diodes (LED), semiconductor lasers, optical modulators and amplifiers, and typical photonic systems. Letter grading.

Lecture, four hours; discussion, one hour; outside study, seven hours. Requisites: course 103, Mathematics 32A, 33A. Introduction to optimization techniques for engineering and science students. Minimization of unconstrained functions of several variables: steepest descent, Newton/Raphson, conjugate gradient, and quasi-Newton methods. Rates of convergence. Methods for constrained minimization: introduction to linear programming and gradient projection methods. Lagrangian methods. Students expected to use SEASnet computers. Letter grading.

Lecture, three hours; discussion, one hour; outside study, eight hours. Requisite: course 121B. MESFET, HEMT, HBT, IMPATT, Gunn, small signal models, noise model, large signal model, loadpull method, parameter extraction technique. Letter grading.

Lecture, three hours; discussion, one hour; outside study, eight hours. Requisite: course 101. Study of different types of laser systems and their operation. Examination of their roles in current and projected biomedical applications. Specific capabilities of laser radiation to be related to each example. Letter grading.

Lecture, two hours; laboratory, four hours; outside study, eight hours. Limited to seniors. Multidisciplinary course with lectures and laboratory experiments on optical sensors. Fundamentals of intensity and interference-based transducers, polarimeters, multiplexing and sensor networks, physical and biomedical sensors. Design and implementation of optical gyroscope, computer interfacing, and signal processing. Letter grading.

(Formerly numbered 173DL.) Lecture, four hours; outside study, eight hours. Requisite: course 102. Recommended: course 132A. Introduction to measurement of basic photonic devices, including LEDs, lasers, detectors, and amplifiers; fiber-optic fundamentals and measurement of fiber systems. Modulation techniques, including A.M., F.M., phase and suppressed carrier methods. Letter grading.

(Formerly numbered M208A.) Lecture, four hours; outside study, eight hours. Limited to graduate students. Application of techniques of linear algebra to engineering problems. Vector spaces: scalar products, Cauchy/Schwarz inequality. Gram/Schmidt orthogonalization. Matrices as linear transformations: eigenvalues and spectrum. Self-adjoint and covariance matrices. Square root and factorization, Cholesky decomposition. Determinants, Cayley/Hamilton theorem. Minimal polynomials, Bezout theorem. Polar and singular value decomposition. Sequences, convergence, and matrix exponential. Applications to problems in signal processing, communications, and control. Letter grading.

Lecture, four hours. Requisite: course 115C. Detailed study of VLSI circuit and system models considering performance, signal integrity, power and thermal effects, reliability, and manufacturability. Discussion of principles of modeling and optimization codevelopment. Letter grading.

Professors

Reviews